3.411 \(\int \frac {(a+i a \tan (c+d x))^{5/2}}{(e \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=362 \[ -\frac {i \sqrt {2} a^{5/2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{d e^{3/2}}+\frac {i \sqrt {2} a^{5/2} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{d e^{3/2}}+\frac {i a^{5/2} \log \left (-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{\sqrt {2} d e^{3/2}}-\frac {i a^{5/2} \log \left (\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{\sqrt {2} d e^{3/2}}-\frac {4 i a (a+i a \tan (c+d x))^{3/2}}{3 d (e \sec (c+d x))^{3/2}} \]

[Out]

1/2*I*a^(5/2)*ln(a-2^(1/2)*a^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/2)+cos(d*x+c)*(a+I*a*tan
(d*x+c)))/d/e^(3/2)*2^(1/2)-1/2*I*a^(5/2)*ln(a+2^(1/2)*a^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))
^(1/2)+cos(d*x+c)*(a+I*a*tan(d*x+c)))/d/e^(3/2)*2^(1/2)-I*a^(5/2)*arctan(1-2^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^
(1/2)/a^(1/2)/(e*sec(d*x+c))^(1/2))*2^(1/2)/d/e^(3/2)+I*a^(5/2)*arctan(1+2^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1
/2)/a^(1/2)/(e*sec(d*x+c))^(1/2))*2^(1/2)/d/e^(3/2)-4/3*I*a*(a+I*a*tan(d*x+c))^(3/2)/d/(e*sec(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.33, antiderivative size = 362, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {3496, 3495, 297, 1162, 617, 204, 1165, 628} \[ -\frac {i \sqrt {2} a^{5/2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{d e^{3/2}}+\frac {i \sqrt {2} a^{5/2} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{d e^{3/2}}+\frac {i a^{5/2} \log \left (-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{\sqrt {2} d e^{3/2}}-\frac {i a^{5/2} \log \left (\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{\sqrt {2} d e^{3/2}}-\frac {4 i a (a+i a \tan (c+d x))^{3/2}}{3 d (e \sec (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[c + d*x])^(5/2)/(e*Sec[c + d*x])^(3/2),x]

[Out]

((-I)*Sqrt[2]*a^(5/2)*ArcTan[1 - (Sqrt[2]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c + d*x]])])
/(d*e^(3/2)) + (I*Sqrt[2]*a^(5/2)*ArcTan[1 + (Sqrt[2]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[
c + d*x]])])/(d*e^(3/2)) + (I*a^(5/2)*Log[a - (Sqrt[2]*Sqrt[a]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/Sqrt[e*Sec[
c + d*x]] + Cos[c + d*x]*(a + I*a*Tan[c + d*x])])/(Sqrt[2]*d*e^(3/2)) - (I*a^(5/2)*Log[a + (Sqrt[2]*Sqrt[a]*Sq
rt[e]*Sqrt[a + I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a + I*a*Tan[c + d*x])])/(Sqrt[2]*d*e^(3
/2)) - (((4*I)/3)*a*(a + I*a*Tan[c + d*x])^(3/2))/(d*(e*Sec[c + d*x])^(3/2))

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 3495

Int[Sqrt[(d_.)*sec[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(-4*b*d^
2)/f, Subst[Int[x^2/(a^2 + d^2*x^4), x], x, Sqrt[a + b*Tan[e + f*x]]/Sqrt[d*Sec[e + f*x]]], x] /; FreeQ[{a, b,
 d, e, f}, x] && EqQ[a^2 + b^2, 0]

Rule 3496

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(2*b*(
d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^(n - 1))/(f*m), x] - Dist[(b^2*(m + 2*n - 2))/(d^2*m), Int[(d*Sec[e + f
*x])^(m + 2)*(a + b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && GtQ[n,
1] && ((IGtQ[n/2, 0] && ILtQ[m - 1/2, 0]) || (EqQ[n, 2] && LtQ[m, 0]) || (LeQ[m, -1] && GtQ[m + n, 0]) || (ILt
Q[m, 0] && LtQ[m/2 + n - 1, 0] && IntegerQ[n]) || (EqQ[n, 3/2] && EqQ[m, -2^(-1)])) && IntegerQ[2*m]

Rubi steps

\begin {align*} \int \frac {(a+i a \tan (c+d x))^{5/2}}{(e \sec (c+d x))^{3/2}} \, dx &=-\frac {4 i a (a+i a \tan (c+d x))^{3/2}}{3 d (e \sec (c+d x))^{3/2}}-\frac {a^2 \int \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)} \, dx}{e^2}\\ &=-\frac {4 i a (a+i a \tan (c+d x))^{3/2}}{3 d (e \sec (c+d x))^{3/2}}+\frac {\left (4 i a^3\right ) \operatorname {Subst}\left (\int \frac {x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{d}\\ &=-\frac {4 i a (a+i a \tan (c+d x))^{3/2}}{3 d (e \sec (c+d x))^{3/2}}-\frac {\left (2 i a^3\right ) \operatorname {Subst}\left (\int \frac {a-e x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{d e}+\frac {\left (2 i a^3\right ) \operatorname {Subst}\left (\int \frac {a+e x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{d e}\\ &=-\frac {4 i a (a+i a \tan (c+d x))^{3/2}}{3 d (e \sec (c+d x))^{3/2}}+\frac {\left (i a^3\right ) \operatorname {Subst}\left (\int \frac {1}{\frac {a}{e}-\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}+x^2} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{d e^2}+\frac {\left (i a^3\right ) \operatorname {Subst}\left (\int \frac {1}{\frac {a}{e}+\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}+x^2} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{d e^2}+\frac {\left (i a^{5/2}\right ) \operatorname {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt {a}}{\sqrt {e}}+2 x}{-\frac {a}{e}-\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}-x^2} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} d e^{3/2}}+\frac {\left (i a^{5/2}\right ) \operatorname {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt {a}}{\sqrt {e}}-2 x}{-\frac {a}{e}+\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}-x^2} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} d e^{3/2}}\\ &=\frac {i a^{5/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{\sqrt {2} d e^{3/2}}-\frac {i a^{5/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{\sqrt {2} d e^{3/2}}-\frac {4 i a (a+i a \tan (c+d x))^{3/2}}{3 d (e \sec (c+d x))^{3/2}}+\frac {\left (i \sqrt {2} a^{5/2}\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{d e^{3/2}}-\frac {\left (i \sqrt {2} a^{5/2}\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{d e^{3/2}}\\ &=-\frac {i \sqrt {2} a^{5/2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{d e^{3/2}}+\frac {i \sqrt {2} a^{5/2} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{d e^{3/2}}+\frac {i a^{5/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{\sqrt {2} d e^{3/2}}-\frac {i a^{5/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{\sqrt {2} d e^{3/2}}-\frac {4 i a (a+i a \tan (c+d x))^{3/2}}{3 d (e \sec (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 3.65, size = 343, normalized size = 0.95 \[ \frac {e (a+i a \tan (c+d x))^{5/2} \left (-\frac {4}{3} i (\cos (c)-i \sin (c)) \cos (d x)+\frac {4}{3} (\cos (c)-i \sin (c)) \sin (d x)+\frac {2 (\cos (2 c)-i \sin (2 c)) \sqrt {\tan \left (\frac {d x}{2}\right )+i} \left (\sqrt {-\sin (c)-i \cos (c)-1} \sqrt {-\sin (c)+i \cos (c)+1} \tanh ^{-1}\left (\frac {\sqrt {\sin (c)-i \cos (c)+1} \sqrt {-\tan \left (\frac {d x}{2}\right )+i}}{\sqrt {-\sin (c)-i \cos (c)-1} \sqrt {\tan \left (\frac {d x}{2}\right )+i}}\right )-\sqrt {\sin (c)-i \cos (c)+1} \sqrt {\sin (c)+i \cos (c)-1} \tanh ^{-1}\left (\frac {\sqrt {-\sin (c)+i \cos (c)+1} \sqrt {-\tan \left (\frac {d x}{2}\right )+i}}{\sqrt {\sin (c)+i \cos (c)-1} \sqrt {\tan \left (\frac {d x}{2}\right )+i}}\right )\right )}{\sqrt {i \sin (2 c)+\cos (2 c)+1} \sqrt {-\tan \left (\frac {d x}{2}\right )+i}}\right )}{d (\cos (d x)+i \sin (d x))^2 (e \sec (c+d x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + I*a*Tan[c + d*x])^(5/2)/(e*Sec[c + d*x])^(3/2),x]

[Out]

(e*(((-4*I)/3)*Cos[d*x]*(Cos[c] - I*Sin[c]) + (4*(Cos[c] - I*Sin[c])*Sin[d*x])/3 + (2*(ArcTanh[(Sqrt[1 - I*Cos
[c] + Sin[c]]*Sqrt[I - Tan[(d*x)/2]])/(Sqrt[-1 - I*Cos[c] - Sin[c]]*Sqrt[I + Tan[(d*x)/2]])]*Sqrt[-1 - I*Cos[c
] - Sin[c]]*Sqrt[1 + I*Cos[c] - Sin[c]] - ArcTanh[(Sqrt[1 + I*Cos[c] - Sin[c]]*Sqrt[I - Tan[(d*x)/2]])/(Sqrt[-
1 + I*Cos[c] + Sin[c]]*Sqrt[I + Tan[(d*x)/2]])]*Sqrt[1 - I*Cos[c] + Sin[c]]*Sqrt[-1 + I*Cos[c] + Sin[c]])*(Cos
[2*c] - I*Sin[2*c])*Sqrt[I + Tan[(d*x)/2]])/(Sqrt[1 + Cos[2*c] + I*Sin[2*c]]*Sqrt[I - Tan[(d*x)/2]]))*(a + I*a
*Tan[c + d*x])^(5/2))/(d*(e*Sec[c + d*x])^(5/2)*(Cos[d*x] + I*Sin[d*x])^2)

________________________________________________________________________________________

fricas [A]  time = 0.56, size = 505, normalized size = 1.40 \[ -\frac {3 \, d e^{2} \sqrt {\frac {4 i \, a^{5}}{d^{2} e^{3}}} \log \left (\frac {d e^{2} \sqrt {\frac {4 i \, a^{5}}{d^{2} e^{3}}} + 2 \, {\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{a^{2}}\right ) - 3 \, d e^{2} \sqrt {\frac {4 i \, a^{5}}{d^{2} e^{3}}} \log \left (-\frac {d e^{2} \sqrt {\frac {4 i \, a^{5}}{d^{2} e^{3}}} - 2 \, {\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{a^{2}}\right ) - 3 \, d e^{2} \sqrt {-\frac {4 i \, a^{5}}{d^{2} e^{3}}} \log \left (\frac {d e^{2} \sqrt {-\frac {4 i \, a^{5}}{d^{2} e^{3}}} + 2 \, {\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{a^{2}}\right ) + 3 \, d e^{2} \sqrt {-\frac {4 i \, a^{5}}{d^{2} e^{3}}} \log \left (-\frac {d e^{2} \sqrt {-\frac {4 i \, a^{5}}{d^{2} e^{3}}} - 2 \, {\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{a^{2}}\right ) - 2 \, {\left (-4 i \, a^{2} e^{\left (3 i \, d x + 3 i \, c\right )} - 4 i \, a^{2} e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{6 \, d e^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(5/2)/(e*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/6*(3*d*e^2*sqrt(4*I*a^5/(d^2*e^3))*log((d*e^2*sqrt(4*I*a^5/(d^2*e^3)) + 2*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*s
qrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c))/a^2) - 3*d*e^2*sqr
t(4*I*a^5/(d^2*e^3))*log(-(d*e^2*sqrt(4*I*a^5/(d^2*e^3)) - 2*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*
x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c))/a^2) - 3*d*e^2*sqrt(-4*I*a^5/(d^2*
e^3))*log((d*e^2*sqrt(-4*I*a^5/(d^2*e^3)) + 2*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)
)*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c))/a^2) + 3*d*e^2*sqrt(-4*I*a^5/(d^2*e^3))*log(-(d*e
^2*sqrt(-4*I*a^5/(d^2*e^3)) - 2*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2
*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c))/a^2) - 2*(-4*I*a^2*e^(3*I*d*x + 3*I*c) - 4*I*a^2*e^(I*d*x + I*c
))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c))/(d*e^2)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}{\left (e \sec \left (d x + c\right )\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(5/2)/(e*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)^(5/2)/(e*sec(d*x + c))^(3/2), x)

________________________________________________________________________________________

maple [A]  time = 1.22, size = 323, normalized size = 0.89 \[ -\frac {\sqrt {\frac {a \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (-3 i \arctanh \left (\frac {\sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1-\sin \left (d x +c \right )\right )}{2}\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+3 i \arctanh \left (\frac {\sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1+\sin \left (d x +c \right )\right )}{2}\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+8 i \left (\cos ^{2}\left (d x +c \right )\right )-3 \arctanh \left (\frac {\sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1-\sin \left (d x +c \right )\right )}{2}\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-3 \arctanh \left (\frac {\sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1+\sin \left (d x +c \right )\right )}{2}\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-8 \cos \left (d x +c \right ) \sin \left (d x +c \right )-4 i \cos \left (d x +c \right )+4 \sin \left (d x +c \right )-4 i\right ) a^{2}}{3 d \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )-1\right ) \cos \left (d x +c \right ) \left (\frac {e}{\cos \left (d x +c \right )}\right )^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(d*x+c))^(5/2)/(e*sec(d*x+c))^(3/2),x)

[Out]

-1/3/d*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*(-3*I*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1
-sin(d*x+c)))*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+3*I*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1+sin(d
*x+c)))*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+8*I*cos(d*x+c)^2-3*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c
)+1-sin(d*x+c)))*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-3*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1+sin(
d*x+c)))*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-8*cos(d*x+c)*sin(d*x+c)-4*I*cos(d*x+c)+4*sin(d*x+c)-4*I)/(I*sin(d
*x+c)+cos(d*x+c)-1)/cos(d*x+c)/(e/cos(d*x+c))^(3/2)*a^2

________________________________________________________________________________________

maxima [B]  time = 1.00, size = 1492, normalized size = 4.12 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(5/2)/(e*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

-1/12*(-6*I*sqrt(2)*a^2*arctan2(sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1, sqrt(2)*sin(
1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) - 6*I*sqrt(2)*a^2*arctan2(sqrt(2)*cos(1/4*arctan2(sin(2*
d*x + 2*c), cos(2*d*x + 2*c))) + 1, -sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) - 6*I*s
qrt(2)*a^2*arctan2(sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 1, sqrt(2)*sin(1/4*arctan2(s
in(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) - 6*I*sqrt(2)*a^2*arctan2(sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), c
os(2*d*x + 2*c))) - 1, -sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) - 6*sqrt(2)*a^2*arct
an2(sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
 + 2*c))), sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + cos(1/2*arctan2(sin(2*d*x + 2*c), co
s(2*d*x + 2*c))) + 1) + 6*sqrt(2)*a^2*arctan2(-sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) +
sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))), -sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2
*c))) + cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) + 3*I*sqrt(2)*a^2*log(2*sqrt(2)*sin(1/2*arct
an2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2*(sqrt(2)*cos
(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) +
cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))
)^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x +
 2*c)))^2 + 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) - 3*I*sqrt(2)*a^2*log(-2*sqrt(
2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) -
 2*(sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 1)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*
d*x + 2*c))) + cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*cos(1/4*arctan2(sin(2*d*x + 2*c), co
s(2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*
c), cos(2*d*x + 2*c)))^2 - 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) + 3*sqrt(2)*a^2
*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x
+ 2*c)))^2 + 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2*sqrt(2)*sin(1/4*arctan2(sin(2*
d*x + 2*c), cos(2*d*x + 2*c))) + 2) - 3*sqrt(2)*a^2*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))
^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), co
s(2*d*x + 2*c))) - 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) + 3*sqrt(2)*a^2*log(2*c
os(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))
^2 - 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*
c), cos(2*d*x + 2*c))) + 2) - 3*sqrt(2)*a^2*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*s
in(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 - 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x
+ 2*c))) - 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) + 16*I*a^2*cos(3/4*arctan2(sin(
2*d*x + 2*c), cos(2*d*x + 2*c))) - 16*a^2*sin(3/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*sqrt(a)/(d*e^(
3/2))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}}{{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*tan(c + d*x)*1i)^(5/2)/(e/cos(c + d*x))^(3/2),x)

[Out]

int((a + a*tan(c + d*x)*1i)^(5/2)/(e/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))**(5/2)/(e*sec(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________